Transient Features in Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria and Viability

نویسندگان

  • Stephen J. Beebe
  • Yeong-Jer Chen
  • Nova M. Sain
  • Karl H. Schoenbach
  • Shu Xiao
چکیده

It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Cell Death Mechanisms and Apoptosis by Nanosecond Pulsed Electric Fields (nsPEFs)

Pulse power technology using nanosecond pulsed electric fields (nsPEFs) offers a new stimulus to modulate cell functions or induce cell death for cancer cell ablation. New data and a literature review demonstrate fundamental and basic cellular mechanisms when nsPEFs interact with cellular targets. NsPEFs supra-electroporate cells creating large numbers of nanopores in all cell membranes. While ...

متن کامل

Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells.

Electroporation by using pulsed electric fields with long durations compared with the charging time of the plasma membrane can induce cell fusion or introduce xenomolecules into cells. Nanosecond pulse power technology generates pulses with high-intensity electric fields, but with such short durations that the charging time of the plasma membrane is not reached, but intracellular membranes are ...

متن کامل

Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review.

For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects ob...

متن کامل

Mechanisms for the intracellular manipulation of organelles by conventional electroporation.

Conventional electroporation (EP) changes both the conductance and molecular permeability of the plasma membrane (PM) of cells and is a standard method for delivering both biologically active and probe molecules of a wide range of sizes into cells. However, the underlying mechanisms at the molecular and cellular levels remain controversial. Here we introduce a mathematical cell model that conta...

متن کامل

Cell responses without receptors and ligands, using nanosecond pulsed electric fields (nsPEFs)

This Article is brought to you for free and open access by the Frank Reidy Research Center for Bioelectrics at ODU Digital Commons. It has been accepted for inclusion in Bioelectrics Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Repository Citation Beebe, Stephen J., "Cell Responses Without Receptors and Ligands,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012